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Half-width of intensity profiles of light scattered from self-affine fractal random surfaces
and simulational verifications
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~Received 7 January 2002; published 12 June 2002!

Based on the fact that the half-width of the Fourier transform is inversely proportional to that of a sym-
metrical primary decay function, the half-width of the intensity profiles of light scattered from self-affine
fractal random surfaces in the wholek' region is studied. The primary function, whose Fourier transform is the
intensity profile, is approximated with a simple mathematical decay function by equating their half-widths and
maximums. The expression obtained for the half-width of the scattered intensity profiles reduces to the present
results in the two extreme cases with the scattering roughness factors being either very small or very large. For
a complete verification, we perform a simulation of the light scattering, in which self-affine fractal random
surfaces are generated with an algorithm that is an analogy to the formation of laser speckles. The simulated
and theoretical results conform well.
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I. INTRODUCTION

The self-affine fractal random surface is a model that
describe many practical surfaces ranging from the mate
growth fronts@1,2# to natural random screens@3,4#. The pa-
rameters of random surfaces of this kind include the ro
mean-square deviation roughnessw, the lateral correlation
lengthj, and the roughness exponenta that shows the fracta
properties of the surfaces. It is well known that the scatter
technique is one of the most powerful tools for random s
face characterizations, and its applications to self-affine fr
tal random surfaces are of great interest@5–10#. Yang et al.
@11,12# have come up with the theoretical results of scatt
ing from self-affine fractal surfaces, in which one of the mo
interesting and useful results is the full width at half ma
mum of the scattered intensity profiles when the scatte
roughness factorV5k'

2 w2 is either very small or very large
Based on these results, a light scattering scheme with va
angles of incidence is developed@9,10,13#, with which one
can extract the lateral correlation lengthj and the roughnes
exponenta of a random surface sample from the measu
intensity profiles corresponding to different incident ang
of the illuminating light beam. This to some degree brea
free from the limitations of the conventional scatteri
method that usually uses a single profile at a certain angl
incidence for extraction of the surface parameters. When
scattering roughness factorV takes medium values, the co
responding incident angles of the illuminating light bea
often have moderate values, and therefore the measurem
are more convenient and easier to perform. However, to
knowledge, how the half-width of the scattered profiles w
mediumV behaves and how it is related to the surface
rameters is not well understood, and therefore, the met
for extraction of surface parameters from the widths of
measured profiles in the corresponding incident angles
not been developed.

Based on the principle that the half-width of the Four
transform of a symmetrical decay function is inversely p
portional to the half-width of the function itself, and by a
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proximating with a simple mathematical decay function t
primary function whose Fourier transform is the intens
profile, we derive a generic expression for the half-width
the intensity profiles scattered from self-affine fractal rand
surfaces. AsV takes either very small or very large value
this expression reduces to the present results for both
extreme cases. For the complete verification of this gen
expression, we propose a method for generation of self-af
fractal random surfaces by an analogy of surface heigh
laser speckle fields, and simulate its light scattering, with
intensity profiles obtained at different angles of inciden
The variation of the half-width of these simulated profil
versus the perpendicular component of the wave vector c
forms well with that predicted by the expression of this p
per. The results of this paper promise the method for extr
tion of surface parameters from the profiles of the mediumV
region.

II. THE HALF-WIDTH OF THE SCATTERING PROFILES
AT V™1 AND Vš1

The autocorrelation function of the heighth(r0) of a self-
affine fractal function can be characterized by the followi
phenomenological function@7,12#:

Rh~r!5^h~r0!h~r01r!&5w2 exp@2~r/j!2a#, ~1!

where r0 is the position vector,r5uru, and the roughness
exponenta is related to the surface fractal dimensionD f by
a5d2D f with 0<a<1 andd being the embedded dimen
sion. More often, another choice, i.e., height-height corre
tion H(r), is used for characterizing the random surfaces
is defined as

H~r!5^@h~r01r!2h~r0!#2&52@w22Rh~r0 ,r01r!#.
~2!

According to Kirchhoff’s theory of diffraction, when the ran
dom surface is illuminated by an incident light wave wi
wavelengthl0 and wave vectork0 , the scattered wave cor
responding to wave vectork is
©2002 The American Physical Society04-1
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U~k!5E exp@2 ik'h~r0!#exp~2 iki•r0!d2r0 , ~3!

where k5ks2k0 , ks is the wave vector of the scattere
wave, k' and ki are the perpendicular and parallel comp
nents of k, respectively, k'52p cosu(11cosb)/l
'4p cosu/l, andki52p sinb/l, with u andb representing,
respectively, the angle of incidence and the angle betw
the scattered wave vector and the direction of the spec
reflection. The scattered intensity profile can be written as@8#

I ~k!5^U~k!U* ~k!&5E
2`

1`

exp@2k'
2 H~r!/2#

3exp~2 iki•r!d2r. ~4!

For the self-affine fractal random surfaces whose heig
height correlationH(r) is given by Eq.~1! and Eq.~2!, it is
impossible to obtain from the above equation the rigoro
solution of I (k) as the explicit non-integral-transform func
tion of k. Therefore, approximations should be taken in
account for further simplification ofI (k). Yanget al. @11,12#
have proved that when the scattering roughness factoV
5k'

2 w2!1, I (k) is expressed by

I ~k!5I ~ki!5~2p!exp~2k'
2 w2!F2pd~ki!

1k'
2 w2j2E

0

`

exp~2t2a!tJ0~kijt !dtG , ~5!

while whenV5k'
2 w2@1, I (k) is expressed by

I ~k!5I ~ki!5j2~k'w!22/a

3E
0

`

exp~2t2a!tJ0~k'
21/aw21/ajkit !dt. ~6!

The first term on the right-hand side of Eq.~5! represents the
centrald peak in the scattered profile, which is caused by
specular reflection. The diffused terms represented by
integrals in both Eq.~5! and Eq.~6! are the Bessel-Fourie
transforms of exp(2t2a), which remain analytically unsolv
able except fora51. However, it is sure that they are sym
metrical decay functions ofki with the arguments beingkij
and k'

21/aw21/ajki , respectively, for V!1 and V@1.
Therefore, the half-widths of these two functions are
versely proportional to the coefficients ofki in the arguments

Wp}H 1/j, V!1,

@k'
21/aw21/aj#21, V@1.

~7!

We can further obtain the equality expressions for
proportional relations by using the width of the scatteri
profiles with roughness exponenta51. In this case, the pri-
mary function exp(2t2a) in the Fourier transform in Eq.~5!
and Eq.~6! turns into exp(2t2). Then, from the properties o
the integral of Bessel function, we have
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F~ki!5E
0

`

exp~2t2!tJ~jkit !dt5
1

2
exp@2~kij/2!2#.

~8!

By defining the half-width ofF(ki) as theki value which
F(ki) drops to 1/e of its maximum, we obtain from Eqs.~5!,
~6!, and~8! that whena51 the half-widthsWp of the scat-
tered profiles are 2/j and 2/(k'

21w21j), respectively, for the
two extreme cases. This determines that the proportiona
coefficients in expression~7! should be 2. Thus we have th
width of the scattering profiles for the arbitrarya :

Wp5H 2/j, V!1,

2/~k'
21/aw21/aj!, V@1.

~9!

III. THE HALF-WIDTH OF THE SCATTERING PROFILES
FOR ARBITRARY V

In order to obtain the expression for the half-width of t
profile I (ki) at arbitraryV5k'

2 w2, we rewrite I (ki), from
Eqs.~1!, ~2!, and~4!, as

I ~ki!5~2p!2 exp~2V!d~ki!1I diff~ki ,k'!. ~10!

The first term on the right-hand side of the above equat
represents the centrald peak, and the second term is th
diffused term

I diff~ki ,k'!5I diff~ki!52p exp~2V!j2

3E
0

`

$exp@V exp~2x2a!#21%xJ0~kijx!dx.

~11!

In the Fourier transform on the right-hand side of the abo
equation, the primary function that we represent byG(x)
5exp@V exp(2x2a)#21 is a symmetrical decay function ofx
with @exp(V)21# its maximum atx50, and zero its mini-
mum asx→`. If we analytically fit it using the simple deca
functionsD(x), such as Gaussians and Lorentzians, the h
width of the Fourier transform of the obtainedD(x) can be
approximately taken as the half-width of that ofG(x). Thus
we can get the half-width of the scattered profileI diff(ki).

In order to chooseD(x), we have tried several math
ematical decay functions to fitG(x) and found the best one
is

D~x!5B exp@2~x/A!2a#, ~12!

with its form being the closest to that ofG(x) as well. The
basic principle for the determination of the constantsA andB
in D(x) is to letD(x) andG(x) have the same maximum a
x50 and the same half-width. Therefore,B should satisfy

B5G~0!5exp~V!21, ~13!

and the half-widthA of D(x) should be the value ofx at
which G(x) drops to 1/e of its maximum, which is expresse
as
4-2
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FIG. 1. The comparison ofG(x) andD(x). ~a! V50.1, ~b! V51.0, and~c! V510.0.
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exp@V exp~2A2a!#215@exp~V!21#/e. ~14!

ThenA is given by

A5H ln
V

ln@exp~V21!1121/e#J
1/2a

. ~15!

Figure 1 shows the plots ofG(x) at differentw anda values
and those of the correspondingD(x) with A andB calculated
through the expressions~13! and ~15!. We see that the re
placement ofG(x) with D(x) is of good accuracy. Replacin
G(x) in Eq. ~11! by D(x), we have the approximate expre
sion for the scattered profile,

I diff~ki!52p exp~2V!j2E
0

`

@exp~V!21#

3exp@2~x/A!2a#xJ0~kijx!dx

52pA2j2 exp~2V!@exp~V!21#

3E
0

`

exp~2x2a!xJ0~kijAx!dx. ~16!

Referring to the derivation of expression~9! for Wp from
Eqs. ~5! and ~6! in both the extreme cases, we can obta
from Eq. ~16! the half-widthWp for arbitrary value ofV,

Wp52/~jA!52j21H ln
V

ln@exp~V21!1121/e#J
21/2a

.

~17!

The detailed behavior of the approximate profile functi
I diff(ki) in Eq. ~16! may differ to a certain degree from tha
of the rigorous profileI diff(ki) in Eq. ~11!, but their half-
widths, which are what we are really concerned with here
this paper, should differ to a much less degree. Theref
though derived from the approximate profile function, e
pression~17! for the half-widthWp is of good accuracy, as
will be depicted in the following. Now we first discuss it i
the two extreme cases. In Eq.~15!, the term exp(V21)
21/e'V/e!1 asV!1, and then we have

A'F ln
V

ln~V/e11!G
1/2a

'F ln
V

~V/e!G
1/2a

51.
06110
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This reduces Eq.~17! to the result of Eq.~9!,

Wp52/j ~V!1!. ~18!

If we substituteA51 into Eq.~16!, our approximate expres
sion ~16! for the diffused profile turns into the diffused term
in Eq. ~5!. WhenV@1, Eq. ~15! can be written as

A'H ln
V

ln@exp~V21!#J
1/2a

5F lnS 11
1

V21D G1/2a

'V21/2a.

Then Eq.~17! becomes

Wp52/~jA!'2j21k'
1/aw1/a ~V@1!.

This is also the result in Eq.~9!. In this case, if we substitute
A into Eq. ~16! and notice that exp(V21)→exp(V) and that
in Eq. ~10!, exp(2V)→0, our approximate profile function
I diffa(ki) in Eq. ~16! reduces exactly to Yanget al.’s results
of Eq. ~6!. These coincidences partly verify the results of th
paper. One may notice how simple the complicated ma
ematical process for the simplification ofI (k) to Eq. ~6!
turns out to be as illustrated in this paper.

IV. THE ALGORITHM FOR THE SURFACE GENERATION
AND THE SIMULATION OF LIGHT SCATTERING

We now make use of the simulation technique of lig
scattering for a complete verification of Eq.~17!. We first
need an algorithm for the numerical generation of self-affi
fractal random surfaces. Considering that the autocorrela
function Rh(r)5w2 exp@(2r/j)2a# is symmetrically de-
cayed, and that its Fourier transform should be real and n
negative, we define the functionp(u) by

p~u!5@P~u!#1/2,
~19!

P~u!5E
2`

1`

w2 exp@2~v/j!2a#exp~ i2pu•v !d2v.

We callp(u) the ‘‘aperture function’’ by analogy to the lase
speckle theory@14#. The following expression is used for th
generation of complex height distribution:
4-3
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hc~r0!5hr~r0!1 ihi~r0!

5&E
2`

`

p~u!h~u!exp~2 i2pu•r0!du, ~20!

whereh(u) is a white-noise random process with zero-me
value, i.e.,^h(u)&50 and^h(u)h(u8)&5d(u2u8); hr(r0)
andhi(r0) are, respectively, the real and imaginary parts
hc(r0). Following the way for studying the properties of th
speckle light field@14#, one will not find it too difficult to
show that the autocorrelation functions of bothhr(r0) and
hi(r0) equal the one given in Eq.~1!, andhr(r0) andhi(r0)
are Gaussian random process with zero mean. Then
hr(r0) andhi(r0) can be taken as the height distribution o
self-affine fractal surface. In our practical computation,
use the numerically generated white-noise series forh(u),
and use onlyhr(r0) as the generated surface height, disca
ing hi(r0). In Fig. 2, four surface samples generated with
same series ofh(u) with w50.2mm, j56.0mm but differ-
ent a values are shown. Next, the light fieldU(k)5U(ki)
scattered at certain angle of incidenceu can be computed
numerically based on Eq.~3!, in which k''4p cosu/l. l is

FIG. 3. Some of the scattered intensity profiles of surface
semble 1.

FIG. 2. The four surface samples generated with the same s
of random number. To avoid overlap, background bases of 2.4
and 0.8mm are added, respectively, to samples witha51.0, 0.8,
and 0.6.
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set to be 0.6328mm, corresponding to the wavelength o
He-Ne laser. With different series ofh(u) and unchanged
values of parametersw, j, anda, we generate 4000 surfac
samples and take them as one surface ensemble. Arithm
cally averaging all the intensitiesI u(ki)5U(ki)U* (ki) at
the sameki point produced by each of the surface samples
the ensemble, we obtain the ensemble average inten
I (ki)5^I u(ki)&5^U(ki)U* (ki)&. Then the simulated scat
tered profile can be readily obtained by calculating theI (ki)
at all ki points. For simplicity and lucidity, we only genera
the one-dimensional random surfaces and simulate their s
tered intensity profiles.

Figure 3 shows some of our simulated profiles at differ
angles of incidence, scattered by surface ensemble 1 wit
parameters set atw150.2mm, j153.0mm, and a150.6.
We see that the widths of the profiles increase ask' in-
creases, or equivalentlyu decreases, and the centrald peak
appears whenk' is small.

For one surface ensemble, we select 18 angles of i
dence in the angle range from 0° to 90°, at each of which
corresponding scattered profile is simulated. Then by fitt
each of the profiles with Gaussian functionGf(x)5C exp
@2(ki /D)2#, we obtain the value of the constantD, which is
taken as the half-widthWp of the simulated profile. This
method for extracting the half-width of the scattered profi
has been used in the literature@10,13,15# and is shown to be
effective and accurate enough. In Fig. 4, the half-widths
the simulated profiles produced by surface ensembles 1 a
are plotted versusk' in the log-log scale. Surface ensemble
is generated with parameters set atw250.2mm, j2
53.0mm, anda251.0. Figure 4 also shows in solid line
theWp-k' curves obtained by substituting the parameters
the two surface ensembles into Eq.~17!. It can be seen tha
the half-width expression of this paper conforms well to t
results of simulation in the whole range ofk' .

V. CONCLUSIONS

We have studied the properties of the half-width of t
intensity profiles of light scattered from the self-affine frac
random surfaces in the whole range ofk' . The introduction
of the approximations for the primary functionG(x) makes
-

FIG. 4. The half-width of the scattered intensity profile vers
k' for surface ensembles 1 and 2.ies

.6
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it feasible to perform a theoretical analysis of the half-wid
of the scattered intensity. The expressions we obtained gi
full understanding of the behaviors of half-widths with th
variation of incident angle of the light wave. The resu
obtained in the previous literature forV!1 and V@1,
whose derivations were rather complicated, are included
our expressions and are obtained easily. Since the conclu
of this paper relates the half-widths of the profiles to all t
statistical parameters of self-affine fractal random surface
will be of great importance for practical measurements
experimental setups of light scattering with variable ang
of incidence. The half-widths of the intensity profiles in th
case of mediumV, which is much more often met in exper
ments than the two extreme cases can be readily used fo
-
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gh

u,
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surface parameters to be extracted. We believe that this
not only enlarge the measurable range of the random sur
parameters with the scattering technique, but also gre
ease the experimental work. Besides, the algorithms p
posed in this paper for the generation of self-affine frac
random surfaces and for their light scattering simulation w
be of significance in the study of the related fields.
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