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Half-width of intensity profiles of light scattered from self-affine fractal random surfaces
and simulational verifications
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Based on the fact that the half-width of the Fourier transform is inversely proportional to that of a sym-
metrical primary decay function, the half-width of the intensity profiles of light scattered from self-affine
fractal random surfaces in the whde region is studied. The primary function, whose Fourier transform is the
intensity profile, is approximated with a simple mathematical decay function by equating their half-widths and
maximums. The expression obtained for the half-width of the scattered intensity profiles reduces to the present
results in the two extreme cases with the scattering roughness factors being either very small or very large. For
a complete verification, we perform a simulation of the light scattering, in which self-affine fractal random
surfaces are generated with an algorithm that is an analogy to the formation of laser speckles. The simulated
and theoretical results conform well.
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[. INTRODUCTION proximating with a simple mathematical decay function the

primary function whose Fourier transform is the intensity

The self-affine fractal random surface is a model that caprofile, we derive a generic expression for the half-width of
describe many practical surfaces ranging from the materidhe intensity profiles scattered from self-affine fractal random

growth fronts[1,2] to natural random screefid,4]. The pa-  surfaces. Ad) takes either very small or very large values,
rameters of random surfaces of this kind include the rootthis expression reduces to the present results for both the
mean-square deviation roughnessthe lateral correlation €xtreme cases. For the complete verification of this generic
length¢, and the roughness exponenthat shows the fractal ©XPression, we propose a method for generation of self-affine
properties of the surfaces. It is well known that the scattering’ramaI random surfaces by an analogy of surface height to

technique is one of the most powerful tools for random sur-aser s_peckle_fields, a’?d simula’_[e its light scatterin_g, \.Nith the
intensity profiles obtained at different angles of incidence.

face characterizations, and its applications to self-affine frac_l_he variation of the half-width of these simulated profiles

tal random surfaces are of great intergst10]. Yang et al. ;

[11,17] have come up with the theoretical results of scatter—versus the pgrpendmularlcomponent of the wave vectpr con-
: ’f if-affine fractal surf in which f1h tforms well with that predicted by the expression of this pa-
Ing from Sefi-atine fractal surtaces, in which one otthe Most, o rhe resyits of this paper promise the method for extrac-

interesting and useful results is the full width at half maxi- tion of surface parameters from the profiles of the medum
mum of the scattered intensity profiles when the scatteringegion_

roughness factaof) = kfw2 is either very small or very large.

Based on these results, a light scattering scheme with varieq THe HALE-WIDTH OF THE SCATTERING PROFILES
angles of incidence is developgd,10,13, with which one AT Q<1 AND Q>1

can extract the lateral correlation lengtfand the roughness

exponenta of a random surface sample from the measured The autocorrelation function of the heightr,) of a self--
intensity profiles corresponding to different incident angles@ffine fractal function can be characterized by the following
of the illuminating light beam. This to some degree breakg?henomenological functiof7,12]:

free from the limitations of the conventional scattering N

method that usually uses a single profile at a certain angle of Ra(p)=(h(ro)h(ro+p)=wexid —(p/)**], (D)
incidence for extraction of the surface parameters. When thﬁ/here fo is the position vectorp
scattering roughness factfr takes medium values, the cor-
responding incident angles of the illuminating light beam
often have m°defate values, gnd therefore the measuremeiy, \jore often, another choice, i.e., height-height correla-
are more convenient and easier to perform. Howev_er, to oygy H(p), is used for characterizing the random surfaces. It
knowledge, how the half-width of the scattered profiles WlthiS defined as

medium () behaves and how it is related to the surface pa-

rameters is not well understood, and therefore, the method H(p)=([h(ro+p) —h(re) 12 =2[W?—Ry(ro.ro+p)]-

=|p|, and the roughness
exponentu is related to the surface fractal dimensibp by
a=d—D; with O<a=<1 andd being the embedded dimen-

for extraction of surface parameters from the widths of the 2
measured profiles in the corresponding incident angles has
not been developed. According to Kirchhoff’s theory of diffraction, when the ran-

Based on the principle that the half-width of the Fourierdom surface is illuminated by an incident light wave with
transform of a symmetrical decay function is inversely pro-wavelengthhy and wave vectok,, the scattered wave cor-
portional to the half-width of the function itself, and by ap- responding to wave vectdr is
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o 1
U(k)=J exf —ik, h(rg)]exp —ik,-rg)d%rg,  (3) F(kH)zfo exp(—tz)ta(gk”t)dt:Eexp[—(k”g/z)z].

where k=ks—Kkg, kg is the wave vector of the scattered ®
wave, k, andk; are the perpendicular and parallel compo-By defining the half-width ofF (k;) as thek; value which
nents of k, respectively, k, =2mcosf(1+cosB)/x  F(k;) drops to 1¢ of its maximum, we obtain from Eq$5),
~4mcoseé/\, andk,=2m sin/\, with 6 and 3 representing,  (6), and(8) that whena=1 the half-widthsw, of the scat-
respectively, the angle of incidence and the angle betweetred profiles are 2/and 2/, 'w~1¢), respectively, for the
the scattered wave vector and the direction of the speculawo extreme cases. This determines that the proportionality
reflection. The scattered intensity profile can be writtefBas  coefficients in expressiof¥) should be 2. Thus we have the
. width of the scattering profiles for the arbitrasy.

|<k>=<U<k>u*<k>>=J _exd—KZH(p)/2] 2t Q<1,
sz —la,,,— 1« (9)
 expl—ik,- p)d2p. @) 20k, TwTEE), Q=1

For the self-affine fractal random surfaces whose height-lll. THE HALF-WIDTH OF THE SCATTERING PROFILES
height correlatiorH(p) is given by Eq.(1) and Eq.(2), it is FOR ARBITRARY

impossible to obtain from the above equation the rigorous
solution of 1 (k) as the explicit non-integral-transform func- . . .
tion of k. Therefore, approximations should be taken intoPflle I(k)) at arbitraryQ =k?w?, we rewritel (k;), from
account for further simplification dffk). Yanget al.[11,19  £9S-(1). (2), and(4), as

have proved that when the scattering roughness fa@tor

=kfw'5< L1000 1 oxprossod by o1 (k) = (2m)% exp(— Q) 8(k) + la(ky k). (10)

In order to obtain the expression for the half-width of the

The first term on the right-hand side of the above equation
278(k;) represents the centrdl peak, and the second term is the
I

1(K)=1(k)=(2m)exp —kZw?) diffused term

W fo exq_tzamo(k”gt)dt} e  lortkik)=lan(k)=2mexp~ Q)¢

Xf {exg Q exp(—x??)]— 1}xJo(k éx)dx.
while whenQ=k?w?>1, 1(k) is expressed by 0
1y
L(K)=1(ky) = £%(k, w) 2
In the Fourier transform on the right-hand side of the above
- _i2a — ey~ 1o equation, the primary function that we represent Ggx)
% fo exp(— ) ok, W ek tdt. (6) =exgQ exp(—x2*)]—1 is a symmetrical decay function &f
with [exp)—1] its maximum atx=0, and zero its mini-
The first term on the right-hand side of E§) represents the mum asx—ce. If we analytically fit it using the simple decay
central§ peak in the scattered profile, which is caused by thdunctionsD(x), such as Gaussians and Lorentzians, the half-
specular reflection. The diffused terms represented by theidth of the Fourier transform of the obtain&i{x) can be
integrals in both Eq(5) and Eq.(6) are the Bessel-Fourier approximately taken as the half-width of that®{x). Thus
transforms of exp¢t®®), which remain analytically unsolv- we can get the half-width of the scattered profijg(k;).
able except forw=1. However, it is sure that they are sym-  In order to chooseD(x), we have tried several math-
metrical decay functions df, with the arguments beinky ¢  ematical decay functions to fs(x) and found the best one
and k Yew~ gk, , respectively, forQ<1 and Q>1. is
Therefore, the half-widths of these two functions are in-

versely proportional to the coefficientskfin the arguments D(x)=B exf — (x/A)**], (12
1/¢ Q<1 with its form being the closest to that &(x) as well. The
W :l/a a1 ' (7) basic principle for the determination of the constahndB
[k, w217, Q>1 in D(x) is to letD(x) andG(x) have the same maximum at

) ) ) x=0 and the same half-width. Therefoi&should satisfy
We can further obtain the equality expressions for the

proportional relations by using the width of the scattering B=G(0)=expQ)—1, (13)
profiles with roughness exponeaat=1. In this case, the pri-

mary function exptt>®) in the Fourier transform in Eq5)  and the half-widthA of D(x) should be the value of at
and Eq.(6) turns into expt-t?). Then, from the properties of which G(x) drops to 1¢ of its maximum, which is expressed
the integral of Bessel function, we have as
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FIG. 1. The comparison db(x) andD(x). (a) 2=0.1, (b) Q=1.0, and(c) 2=10.0.
ex Q exp(—A%Y)]—1=[expQ)—1]/e. (14)  This reduces Eq(17) to the result of Eq(9),
ThenA is given by Wp=2/¢ (Q2<1). (18
Q v (15) If we substituteA=1 into Eq.(16), our approximate expres-

In Inf[exp(Q1—1)+1-1/e] sion (16) for the diffused profile turns into the diffused term
in Eq. (5). WhenQ>1, Eq.(15) can be written as

A=

Figure 1 shows the plots @(x) at differentw and « values

and those of the correspondibgx) with A andB calculated QO V2
through the expressiond.3) and (15). We see that the re- A“[mm] =
placement of5(x) with D(X) is of good accuracy. Replacing

G(x) in Eq. (12) by D(x), we have the approximate expres- Then Eq.(17) becomes
sion for the scattered profile, '

1 1/2
In 1+—” ~Q Y

0-1

(= W,=2/(£A)~2& Tk *whe  (Q>1).
Lgir (k) =2mexp(— Q)& J [exp(Q)—1]
0 This is also the result in Eq9). In this case, if we substitute

x ex] — (X A)2¥xJo(ky€x)dx A'into Eq. (16) and notice that exgf—1)—exp(?) and that
5 in Eq. (10), exp(—Q)—0, our approximate profile function
=2mAE exp(—Q)[exp(Q) —1] lgira(k)) in EQ. (16) reduces exactly to Yangt al’s results

" of Eq. (6). These coincidences partly verify the results of this
xf exp( —x?%)xJo(k EAX)dX. (16) paper. One may notice how simple the complicated math-
0 ematical process for the simplification ofk) to Eq. (6)

) o ) turns out to be as illustrated in this paper.
Referring to the derivation of expressidf) for W, from

Egs. (5) and (6) in both the extreme cases, we can obtain

from Eq. (16) the half-widthw, for arbitrary value of(}, IV. THE ALGORITHM FOR THE SURFACE GENERATION

AND THE SIMULATION OF LIGHT SCATTERING

Q e We now make use of the simulation technique of light
In[exp(Q2—1)+1—1/e] ' scattering for a complete verification of E(L7). We first
need an algorithm for the numerical generation of self-affine
. . . . .__fractal random surfaces. Considering that the autocorrelation
The detailed behavior of the approximate profile functiong , - i Ru(p)=w2exg(—pl9?*] is symmetrically de-

lin(ky) in Eq. (16) may differ to a certain degree from that aveq and that its Fourier transform should be real and non-
of the rigorous profilel 45(k;) in Eq. (11), but their half- negative, we define the functigs(u) by
widths, which are what we are really concerned with here in '

this paper, should differ to a much less degree. Therefore, p(u)=[P(u)]2
though derived from the approximate profile function, ex- '
pression(17) for the half-widthW, is of good accuracy, as .
will be depicted in the following. Now we first discuss it in p(u):f w2exd — (v/€)2¥]exp(i2mu-v)dv.
the two extreme cases. In E@l5), the term expQ—1)

—1lle~Q/e<1 as()<1, and then we have

Wp=2/(§A)=2§1[ In

(19
We callp(u) the “aperture function” by analogy to the laser

speckle theory14]. The following expression is used for the
generation of complex height distribution:

1/2a

1/2a

Q

In ln—(Q/e)

A~

In(Q/e+1)
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FIG. 4. The half-width of the scattered intensity profile versus
FIG. 2. The four surface samples generated with the same sern?(s for surface ensembles 1 and 2.

of random number. To avoid overlap, background bases of 2.4, 1.6"

223 (())g,um are added, respectively, to samples witk 1.0, 0.8, 5ot 14 pe 0.6329.m, corresponding to the wavelength of
o He-Ne laser. With different series of(u) and unchanged
) values of parametens, & and «, we generate 4000 surface
he(rg)=h,(rg) +ih;(rg) samples and take them as one surface ensemble. Arithmeti-
. cally averaging all the intensitiek,(k,)=U(k)U* (k) at
=1/2f p(u)p(u)exp(—i2mu-rg)du, (200  the samek; point produced by each of the surface samples in
- the ensemble, we obtain the ensemble average intensity
(k) =(ly(k))y=(U(k)U*(k;)). Then the simulated scat-
where(u) is a white-noise random process with zero-meanered profile can be readily obtained by calculating Itfig)
value, i.e.,(n(u))=0 and(n(u)n(u’))=S(u—u’); hi(ro)  atallk, points. For simplicity and lucidity, we only generate
andh;(ro) are, respectively, the real and imaginary parts ofthe one-dimensional random surfaces and simulate their scat-
h(ro). Following the way for studying the properties of the tered intensity profiles.
speckle light field[14], one will not find it too difficult to Figure 3 shows some of our simulated profiles at different
show that the autocorrelation functions of bdtf(r;) and  angles of incidence, scattered by surface ensemble 1 with its
hi(ro) equal the one given in Eql), andh,(ro) andhi(r)  parameters set at;=0.2um, £,=3.0um, and a;=0.6.
are Gaussian random process with zero mean. Then boilye see that the widths of the profiles increasekasin-
h.(ro) andh;(ry) can be taken as the height distribution of acreases, or equivalentl§ decreases, and the centépeak
self-affine fractal surface. In our practical computation, weappears whe#, is small.
use the numerically generated white-noise seriessfar), For one surface ensemble, we select 18 angles of inci-
and use onhyh,(ro) as the generated surface height, discarddence in the angle range from 0° to 90°, at each of which the
ing hi(ro). In Fig. 2, four surface samples generated with thecorresponding scattered profile is simulated. Then by fitting
same series ofy(u) with w=0.2.um, £=6.0um but differ-  each of the profiles with Gaussian functi@(x)=C exp
ent « values are shown. Next, the light field(k)=U (k) [—(Iq‘/D)Z], we obtain the value of the constabf which is
scattered at certain angle of incidengecan be computed taken as the half-widtiw, of the simulated profile. This
numerically based on E@3), in whichk, ~4m cosé/\. N is  method for extracting the half-width of the scattered profiles
has been used in the literatyrE0,13,19 and is shown to be
effective and accurate enough. In Fig. 4, the half-widths of
the simulated profiles produced by surface ensembles 1 and 2
are plotted versuk, in the log-log scale. Surface ensemble 2
is generated with parameters set atb=0.2um, &,
=3.0um, anda,=1.0. Figure 4 also shows in solid lines
the W,,-k, curves obtained by substituting the parameters of
the two surface ensembles into Ed7). It can be seen that
the half-width expression of this paper conforms well to the
results of simulation in the whole range lof .
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V. CONCLUSIONS

We have studied the properties of the half-width of the
intensity profiles of light scattered from the self-affine fractal

FIG. 3. Some of the scattered intensity profiles of surface enfandom surfaces in the whole rangekof. The introduction
semble 1. of the approximations for the primary functigd(x) makes
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it feasible to perform a theoretical analysis of the half-widthssurface parameters to be extracted. We believe that this will
of the scattered intensity. The expressions we obtained giversot only enlarge the measurable range of the random surface
full understanding of the behaviors of half-widths with the parameters with the scattering technique, but also greatly
variation of incident angle of the light wave. The resultsease the experimental work. Besides, the algorithms pro-
obtained in the previous literature fdR<<1 and QO>1, posed in this paper for the generation of self-affine fractal
whose derivations were rather complicated, are included inandom surfaces and for their light scattering simulation will
our expressions and are obtained easily. Since the conclusidr@ of significance in the study of the related fields.

of this paper relates the half-widths of the profiles to all the

st_anstlcal parameters of self-affine fra<_:ta| random surfaces_, it ACKNOWLEDGMENTS
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